Name: $_$

Directions: Show all work. No credit for answers without work.

- 1. [2 parts, 2 points each] Let $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and let $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
 - (a) Apply the power method to compute \mathbf{x}_k and μ_k for $0 \le k \le 3$.

(b) Note that \mathbf{x}_k is not approaching the direction of an eigenvector of A. Why does this not contradict the power method?

2. [4 points] Given y and v below, decompose y as y = cv + z where c is a scalar and $z \cdot v = 0$.

$$\mathbf{y} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} -3\\1\\-2 \end{bmatrix}$$

3. [2 points] Let $W = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$. Prove that if $\mathbf{z} \cdot \mathbf{v}_i = 0$ for $1 \le i \le p$, then $z \in W^{\perp}$.