Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

- 1. [5.8.8] Let $A = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$ and let $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Execute the power method to generate \mathbf{x}_k and μ_k for $k = 0, \dots, 4$, keeping 3 decimal places. What is the estimated eigenvalue/eigenvector pair?
- 2. Let $\mathbf{u} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}^T$ and $\mathbf{v} = \begin{bmatrix} 1 & -1 & 2 & -2 \end{bmatrix}^T$. Find a scalar α and a vector \mathbf{w} such that $\mathbf{u} = \alpha \mathbf{v} + \mathbf{w}$ and \mathbf{w} is orthogonal to \mathbf{v} .
- 3. [6.1.22] Let $\mathbf{u} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^T$. Explain why $\mathbf{u} \cdot \mathbf{u} \ge 0$ directly from the definition of the dot product. When is $\mathbf{u} \cdot \mathbf{u} = 0$?
- 4. [6.1.24] Verify the parallelogram law for \mathbf{u} and \mathbf{v} in \mathbb{R}^n : $||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} \mathbf{v}||^2 = 2||\mathbf{u}||^2 + 2||\mathbf{v}||^2$.
- 5. [6.1.19] True/False. Justify your answers.
 - (a) $\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2$
 - (b) For any scalar c, $\mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$.
 - (c) If the distance from \mathbf{u} to \mathbf{v} equals the distance from \mathbf{u} to $-\mathbf{v}$, then \mathbf{u} and \mathbf{v} are orthogonal.
 - (d) For a square matrix A, vectors in ColA are orthogonal to vectors in NulA.
 - (e) If vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ span a subspace W and if \mathbf{x} is orthogonal to each \mathbf{v}_j for $j \in \{1, \dots, p\}$, then \mathbf{x} is in W^{\perp} .