Directions:

- 1. Section: Math251
- 2. Write your name with one character in each box below.
- 3. Show all work. No credit for answers without work.
- 4. This assessment is closed book and closed notes. You may not use electronic devices, including calculators, laptops, and cell phones.

Academic Integrity Statement: I will complete this work on my own without assistance, knowing or otherwise, from anyone or anything other than the instructor. I will not use any electronic equipment or notes (except as permitted by an existing official, WVU-authorized accommodation).

Signatu			
Signati	ire:		
\sim 1 \sim 11 \sim 10 \sim 10 \sim 10 \sim 10 \sim 10 \sim 10	AI ().		

- 1. Let $f(x,y) = x + y^2$ and let $R = [1,5] \times [2,3]$.
 - (a) [8 points] Evaluate $\iint_R f(x,y) dA$.

(b) [2 points] What is the average value of f(x,y) over R?

2. [10 points] Find the volume of the solid that lies under the hyperbolic paraboloid $z = 3y^2 - x^2 + 2$ and above the rectangle $R = [-1, 1] \times [1, 2]$.

3. [10 points] Evaluate $\iint_D xy \, dA$ where D is the triangular region with vertices (0,0), (2,2), and (4,0).

- 4. Let a, b, c, d be real numbers such that 0 < a < b and $0 < c < d < 2\pi$, and let R be the polar rectangle $\{(r, \theta) \colon a \le r \le b \text{ and } c \le \theta \le d\}$.
 - (a) [4 points] Sketch R in the plane, using typical example values of a, b, c, d and labeling the appropriate features of your figure with these constants.

(b) [4 points] Let $\Delta r = b - a$ and $\Delta \theta = d - c$. Without using polar integration, prove directly that the area of R equals $\frac{1}{2}(a+b)\Delta r\Delta \theta$.

- (c) [2 points] What formula to we obtain when Δr and $\Delta \theta$ tend to zero?
- 5. [12 points] Evaluate $\iint_R x^2 + y^2 dA$ where R is the region in the first quadrant of the circle with radius 2 centered at the origin.

6. [12 points] Evaluate $\int_{0}^{1} \int_{x}^{2x} \int_{e^{x}}^{e^{y}} \frac{y+x}{z} dz dy dx$.

7. [12 points] Evaluate $\iiint_E z \, dV$, where E is the solid bounded inside the cylinder $x^2 + y^2 = 4$, below the cone $z = \sqrt{x^2 + y^2}$, and above the plane z = 0.

8. [12 points] Evaluate $\iiint_B (x^2 + y^2) dV$ where B is the ball of radius 3 centered at the origin.

9. [12 points] Find the volume of the part of the ball $\rho \leq a$ that lies between the cones $\phi = \pi/4$ and $\phi = \pi/3$.